Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
蒙版的视觉建模(MVM)最近已被证明对视觉预训练有效。虽然在视频输入(例如,蒙版框架建模)上进行了类似的重建目标,在视频语言(VIDL)预训练中探索了类似的重建目标,但先前研究中的预提取的视频功能在预训练期间无法通过MVM进行完善,因此无法通过MVM进行完善为下游性能不满意。在这项工作中,我们系统地检查了MVM在VIDL学习的背景下的潜力。具体而言,我们的研究基于完全端到端的视频变压器(Violet),该视频变压器(Violet)减轻了固定视频表示与MVM培训之间的断开连接。总共探索了MVM的八个不同的重建目标,从低级像素值和定向梯度到高级深度图,光流,离散的视觉令牌和潜在的视觉特征。我们进行全面的实验,并就导致有效MVM培训的因素提供见解。从经验上讲,我们展示了通过MVM目标预先训练的紫罗兰色,可以在13个VIDL基准测试中取得显着改进,从视频问题回答,视频字幕到文本到视频检索等等。
translated by 谷歌翻译
该研究使用数学建模和人类对象实验,探讨了新兴网络摄像头可能在多大程度上泄漏了可识别的文本和图形信息,从网络摄像头捕获的眼镜反射中闪闪发光。我们工作的主要目标是衡量,计算和预测随着网络摄像头技术在未来发展的可识别性因素,限制和阈值。我们的工作探索并表征了基于光学攻击的可行威胁模型,该模型使用视频帧序列上的多帧超级分辨率技术。我们在受控实验室设置中的模型和实验结果表明,可以重建和识别超过75%的屏幕文本,其高度高达10毫米,并使用720p网络摄像头进行重建和识别。我们进一步将此威胁模型应用于具有不同攻击者功能的Web文本内容,以找到可以识别文本的阈值。我们与20名参与者的用户研究表明,当今的720p网络摄像头足以让对手在大芬特网站上重建文本内容。我们的模型进一步表明,向4K摄像机的演变将使文本泄漏的阈值倾斜到流行网站上大多数标题文本的重建。除文本目标外,还针对具有720p网络摄像头的Alexa前100个网站的封闭世界数据集的案例研究显示,即使没有使用机器学习模型,也没有10个参与者的最高识别精度为94%。我们的研究提出了近期缓解,包括用户可以用来模糊视频流的眼镜区域的软件原型。对于可能的长期防御,我们主张采用个人反思测试程序来评估各种环境下的威胁,并证明遵循最少特权原则对隐私敏感的情况的重要性。
translated by 谷歌翻译
视频语言(VIDL)建模的巨大挑战在于从图像/视频理解模型和下游Vidl数据中提取的固定视频表示之间的断开。最近的研究试图通过端到端培训来减轻这种断开连接。为了使其进行计算可行,先前的作品倾向于“想象”视频输入,即,将一些稀疏的采样帧馈送到2D CNN中,然后是简单的均值汇集或连接以获得整体视频表示。虽然实现了有希望的结果,但这种简单的方法可能会失去对于执行下游VIDL任务至关重要的时间信息。在这项工作中,我们呈现紫罗兰色,全新的视频语言变压器,采用视频变压器,明确地模拟视频输入的时间动态。此外,与以前的研究不同,发现视频输入上的预训练任务(例如,屏蔽帧建模)不是非常有效的,我们设计了一个新的预训练任务,屏蔽了视觉令牌建模(MVM),以获得更好的视频建模。具体地,原始视频帧修补程序将“令牌化”转换为离散的视觉令牌,目标是基于蒙面的贴片恢复原始的视觉令牌。综合分析展示了通过视频变压器和MVM显式时间建模的有效性。因此,紫罗兰在5个视频问题的回答任务和4个文本到视频检索任务中实现了新的最先进的性能。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this paper, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR. Our code and pre-trained models will be released.
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译